If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-70t+65=0
a = 16; b = -70; c = +65;
Δ = b2-4ac
Δ = -702-4·16·65
Δ = 740
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{740}=\sqrt{4*185}=\sqrt{4}*\sqrt{185}=2\sqrt{185}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-70)-2\sqrt{185}}{2*16}=\frac{70-2\sqrt{185}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-70)+2\sqrt{185}}{2*16}=\frac{70+2\sqrt{185}}{32} $
| 8g=7g+7 | | (Y-12)=10y-15 | | x^2-4,8x=0 | | z=(1+24)4 | | 296x-8)=40+4x | | (K-12)=10k-15 | | 3i=105 | | 196=(x+24)4 | | 2.3x=16.56 | | 5x+2+6x+4+180-12x+4=180 | | –2q+15=5(–q+12) | | x/5=50/20 | | -8(x)=−x2−3x+15 | | 0.3=0.25x | | (4x-3)/5=18 | | 840•=d | | 2n+5n-3=-21 | | 32=16^(-x+5) | | 0.5(x−12)+2=1.25(x+8)−9.5 | | 7×m=49 | | 6x-8+56=90 | | 2x+50=-6 | | Y=2x^2+24x+64 | | -19=0.5k | | 2(-6r-2r+3)=8r+42 | | -2y+.66=8 | | 3x^-17x+24=0 | | 3x– 5 =5x– 25 | | 0.5(4x-8)+3x+6=90 | | {1}{2}(4x-8)+3x+6=90 | | 7pp=3 | | 1.7+x*4=20/8 |